Galileon Mechanism

Vainshtein (1972); Arkani-Hamed, Georgi, Schwartz (2003) Deffayet, Dvali, Gabadadze & Vainshtein (2002); Luty, Porrati & Rattazzi (2003); Nicolis & Rattazzi (2004)

4d effective theory in DGP: $\mathcal{L}_\pi=3(\partial\pi)^2\left(1+rac{
abla^2\pi}{3\Lambda^3}
ight)+rac{\pi}{M_{\mathrm{Pl}}}
ho$

which enjoys Galilean symmetry: $\partial_{\mu}\pi o \partial_{\mu}\pi + c_{\mu}$

$$3\nabla^2 \pi + \frac{1}{\Lambda^3} \left[(\nabla^2 \pi)^2 - (\partial_\mu \partial_\nu \pi)^2 \right] = \frac{\rho}{2M_{\text{Pl}}}$$

where
$$r_{\star} = \Lambda^{-1} \left(\frac{M}{M_{\mathrm{Pl}}} \right)^{1/3}$$

Field generated on a background below Vainshtein radius of large object: $\pi=\pi_0+\varphi\,, \qquad T=T_0+\delta T$

$$\mathcal{L} = -3(\partial\varphi)^{2} + \frac{2}{\Lambda^{3}} \left(\partial_{\mu}\partial_{\nu}\pi_{0} - \eta_{\mu\nu}\Box\pi_{0}\right) \partial^{\mu}\varphi\partial^{\nu}\varphi$$

$$- \frac{1}{\Lambda^{3}} (\partial\varphi)^{2}\Box\varphi + \frac{1}{M_{\text{Pl}}}\varphi \delta T$$

$$\sim \left(\frac{r_{\star}}{r}\right)^{3/2} \gg 1$$

Kinetic term is enhanced, which means that, after canonical normalization, coupling to δT is suppressed. The non-linear coupling scale is also raised.

- Generalizations:

 Higher-order interactions

 Nicolis, Rattazzi and Trincherini (2009)
 - Multi-galileons

Padilla et al. (2010), Hinterbichler, Trodden and Wesley (2010)

Symmetron Mechanism

K. Hinterbichler and J. Khoury, Phys. Rev. Lett. (2010)

Instead of $m(\rho)$, here it is the coupling to matter that depends on density.

 $\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V(\phi) + \frac{\overline{\phi^2}}{2M^2}T^{\mu}_{\mu}$

where $T^{\mu}_{\ \mu}$ is stress tensor of all matter (Baryonic and Dark)

Symmetron Mechanism

K. Hinterbichler and J. Khoury, Phys. Rev. Lett. (2010)

Instead of $m(\rho)$, here it is the coupling to matter that depends on density.

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 - V(\phi) + \frac{\phi^2}{2M^2}T^{\mu}_{\mu}$$

where $T^{\mu}_{\ \mu}$ is stress tensor of all matter (Baryonic and Dark)

Potential is of the spontaneous-symmetrybreaking form:

$$V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

Most general renormalizable potential with $\phi \to -\phi$ symmetry.

Effective Potential

$$V_{\text{eff}}(\phi) = \frac{1}{2} \left(\frac{\rho}{M^2} - \mu^2 \right) \phi^2 + \frac{1}{4} \lambda \phi^4$$

... Whether symmetry is broken or not depends on local density

Effective Potential

$$V_{\text{eff}}(\phi) = \frac{1}{2} \left(\frac{\rho}{M^2} - \mu^2 \right) \phi^2 + \frac{1}{4} \lambda \phi^4$$

... Whether symmetry is broken or not depends on local density

 ${\it o}$ Outside source, $\rho=0$, symmetron acquires VEV and symmetry is spontaneously broken.

Effective Potential

$$V_{\text{eff}}(\phi) = \frac{1}{2} \left(\frac{\rho}{M^2} - \mu^2 \right) \phi^2 + \frac{1}{4} \lambda \phi^4$$

... Whether symmetry is broken or not depends on local density

- $^{\circ}$ Outside source, $\rho=0$, symmetron acquires VEV and symmetry is spontaneously broken.
- Inside source, provided $ho > \mu^2 M^2$, the symmetry is restored.

Effective Coupling

Perturbations $\delta\phi$ around local background value couple as:

$$\mathcal{L}_{\text{coupling}} \sim \frac{\bar{\phi}}{M^2} \delta \phi \, \rho$$

- Symmetron fluctors decouple in high-density regions
- \odot In voids, where \mathbb{Z}_2 symmetry is broken,

$$\mathcal{L}_{
m coupling} \sim rac{\mu}{\sqrt{\lambda} M^2} \delta \phi \,
ho$$
 $\sim rac{\delta \phi}{M_{
m Pl}}
ho$ gravitational strength

Gravitational-strength, Mpc-range

5th force in voids.

Inspiration...

Inspiration...

Symmetron Couch (\$9500.00)

"NASA-style gravity reduction."

"Offers a unique multi-phase wave experience."

Inspiration...

Symmetron Couch (\$9500.00)

"NASA-style gravity reduction."

"Offers a unique multi-phase wave experience."

Thin-Shell Screening Effect

Behavior of solution depends on

$$\alpha \equiv \frac{\rho R^2}{M^2} = 6 \frac{M_{\rm Pl}^2}{M^2} \Phi_{\rm N}$$

 ${\ }^{m{o}}$ For sufficiently massive objects, such that $\alpha\gg 1$, solution is suppressed by thin-shell effect:

$$\phi_{\mathrm{exterior}}(r) \sim \frac{1}{\alpha} \frac{\mathcal{M}}{M_{\mathrm{Pl}}^2 r} + \phi_0$$

 $m{\circ}$ For small objects, $lpha\ll 1$, we find $\phipprox\phi_0$ everywhere

$$\implies \phi_{\text{exterior}}(r) \sim \frac{\mathcal{M}}{M_{\text{Pl}}^2 r} + \phi_0$$

Parameter Constraints

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + \frac{1}{2}\mu^2\phi^2 - \frac{1}{4}\lambda\phi^4 + \frac{\phi^2}{2M^2}T^{\mu}_{\mu}$$

Necessary (and sufficient) condition is that Milky Way has

thin shell:

$$\alpha_{\rm G} = 6 \frac{M_{\rm Pl}^2}{M^2} \Phi_{\rm G} \gtrsim 1$$

$$\Phi_{\rm G} \sim 10^{-6}$$

$$\implies M \lesssim 10^{-3} M_{\rm Pl}$$

$$\implies \mu \sim \frac{M_{\rm Pl}}{M} H_0 \gtrsim {\rm Mpc}^{-1}$$

$$\lambda \sim \frac{M_{\rm Pl}^4 H_0^2}{M^6} \gtrsim 10^{-100}$$

Predictions for Tests of Gravity

Test	Effective parameter	Current bounds
Time delay/light deflection	$ \gamma - 1 \approx 10^{-5}$	$ \gamma - 1 \approx 10^{-5}$
Nordvedt effect	$ \eta_{\rm N} \sim 10^{-4}$	$ \eta_{\mathrm{N}} \sim 10^{-4}$
Mercury perihelion shift	$ \gamma - 1 \approx 4 \cdot 10^{-4}$	$ \gamma - 1 \approx 10^{-3}$
Binary pulsars	$\omega_{ m BD}^{ m eff}\gtrsim 10^6$	$\omega_{ m BD}^{ m eff} \gtrsim 10^3$

Macroscopic Violations of Equivalence Principle

Khoury & Weltman (2003); Hui, Nicolis and Stubbs (2009)

Because of thin-shell screening, macroscopic objects fall with different acceleration in g-field

$$\vec{a} = -\vec{\nabla}\Phi + \epsilon \frac{\phi}{M^2} \vec{\nabla}\phi$$

- $oldsymbol{\circ}$ Unscreened objects ($\epsilon=1$) feel gravity + symmetron forces
- lacktriangle Screened objects ($\epsilon=0$) only feel gravity

To maximize effect, look for

- large (~ Mpc) void regions, so that symmetry is broken and $\, \bar{\phi}/M^2 = 1/M_{\rm Pl} \,$
- look for unscreened objects (i.e. $\Phi < 10^{-7}$) in these voids

Astrophysical signatures

Hui, Nicolis and Stubbs (2009)

Look at dwarf galaxies in voids

§ Stars are screened ($\Phi \sim 10^{-6}$), but hydrogen gas is unscreened. (Gas itself has only $\Phi \sim 10^{-11}$.)

Should find systematic O(1) discrepancy in the mass estimates based on these two tracers.

NOTE: Effect also possible in chameleon theory but not generic. In the symmetron case, it is generic.

Distinguishable from Other Screening Mechanisms

Chameleon

Potential is non-renormalizable,

e.g.
$$V(\phi)=M^{4+n}/\phi^n$$

Tightest constraint comes from laboratory tests of gravity, and this results in tiny signals for solar system tests Khoury & Weltman (2003)

Galileon

$$3\nabla^2 \pi + \frac{1}{\Lambda_s^3} \left[(\nabla^2 \pi)^2 - (\partial_\mu \partial_\nu \pi)^2 \right] = \frac{\rho}{2M_{\text{Pl}}}$$

- Predicts LLR signal measurable by APOLLO, but insignificant timedelay/light deflection signals. Dvali, Gruzinov and Zaldarriaga (2002)
- No macroscopic violations of EP Hui, Nicolis and Stubbs (2009)

In progress...

1. Symmetron Defects

Levy, Matas, Hinterbichler, Hui & Khoury, in progress

In void regions larger than $\mu^{-1}\approx {\rm Mpc}$, symmetron takes values $\phi=\pm\mu/\sqrt{\lambda}$

Multiple symmetrons \implies global strings, monopoles...?

2. Cosmology

Levy, Matas, Hinterbichler & Khoury, in progress Wang, Hui & Khoury, in progress

* Hubble mass:

e.g.
$$V(\phi) = H_0^2 M_{\rm Pl}^2 \left(e^{-\phi^2/M^2} + \frac{M}{M_{\rm Pl}} e^{\phi^2/M_{\rm Pl}^2} \right)$$

* Self-acceleration?
$$\tilde{g}_{\mu\nu} = \left(1 + \frac{\phi^2}{2M^2} + \mathcal{O}\left(\frac{\phi^4}{M^4}\right)\right)^2 g_{\mu\nu}$$

If no acceleration in Einstein frame, then can we have acceleration in Jordan frame because $\Delta\phi\sim M$?

3. Tantalizing Hints?

Wyman & J. Khoury, PRD (2010) Lima, Wyman & J. Khoury, in progress

- i) Large Scale Bulk Flows
 - $^{\circ}$ Local bulk flow within $50~h^{-1}{
 m Mpc}$ is $407\pm81~{
 m km/s}$ Watkins, Feldman & Hudson (2008)
 - \odot LCDM prediction is $\approx 180~\mathrm{km/s}$

Find:
$$v < 240 \text{ km/s}$$

- ii) Bullet Cluster (1E0657-57)
- Requires $v_{\rm infall} \approx 3000 \ {\rm km/s}$ at 5Mpc separation

 Mastropietro & Burkett (2008)

 ${\color{red} m{\varnothing}}$ Probability in LCDM is between 3.3×10^{-11} and 3.6×10^{-9} Lee & Komatsu (2010)

Find: 10^4 enhancement in prob.

iii) Void phenomenon

$$V(r) = -\frac{\beta G m^2}{r} e^{-r/r_s}$$

with $\beta \sim \mathcal{O}(1)$; $r_s \sim \mathrm{Mpc}$

Between DM only!!!

* However, Yukawa force is tightly constrained on galactic scales:

$$\beta < 0.1$$

Kesden & Kamionkowski, PRL (2007)

(See, however, Peebles et al. (2009).)

But screening mechanism circumvents Kesden-Kamionkowski because Milky Way is screened.

Conclusions

- If new forces are associated with dark sector, then some screening mechanism is required by local tests of gravity
- Chameleon and Symmetron mechanisms rely on densitydependent mass and coupling, respectively.
- Rich phenomenology for laboratory, solar-system and cosmological tests of gravity

Cosmological consequences?

- Peculiar velocities, high-velocity mergers, void phenomenon
- Topological defects